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Self-consistent description of the superfluid channel flow 

� Few facts about Superfluid He II 
� Equation of Motion for VLD 
� Dynamics of VLD in inhomogeneous flow 
� Numerical Setup 
� Results 
� Summary 
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� Following discovery of superfluidity in 4He by Kapitza and  Allen and Missener (1937) 
     Tisza (1940) and Landau(1941) suggested  a Two-fluid model : 
 
       Liquid  4He below Tc consists of two interpenetrating fluids  –  
        the normal fluid  (with  very low kinematic viscosity  νn 

           and  density  ρn ) and the inviscid superfluid  with density ρs ,   
                  ρ + ρ = ρ   density of 4He   for T <2.17 K 
                  𝜈 = 10  𝑐𝑚  /s  at T=2 K 
�In the superfluid, the vorticity is restricted to a set of vortex lines  
        with circulation quantized  to multiples of the circulation quantum                       . 
          
  
         for 4He  the core radius  𝑎 ≈ 10   𝑐𝑚; 𝜅 = 9.97 × 10   𝑐𝑚  /s . 
 
�   The  term    “superfluid turbulence”  refers  to  a chaotic tangle of interacting quantized  
        vortex lines    ( R.P. Feinman, Prog in Low Temp. Phys., vol. 1( 1955) ) 
 
�     The superfluid turbulence may be excited mechanically or by heat currents  
        (counterflow turbulence). 
 

Hemh 4/ N
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second sound (fluctuations of temperature) 
is attenuated by superfluid vortex lines 

The heat  flux   �̇�  is carried away from the 
heater by the normal fluid alone, and, by 
conservation of mass  𝜌 𝑉  + 𝜌 𝑉 = 0  , a  
superfluid current  arises in the opposite 
direction. 
 In this way a relative (counterflow) velocity    
𝑉 = 𝑉 − 𝑉      is created  along the channel,  
which leads to appearance of  a disordered 
tangle of  superfluid vortex lines with density ℒ . 

Thermal counterflow may be set up by applying a 
current to a heater located at the closed end of a 
channel open to a helium bath at the other end. 

A form of motion unique to two-fluid superfluid hydrodynamics, 
 no direct analogy in any ordinary viscous fluid. 

𝑉 =
̇

          ℒ=       ( -1) 
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� At distances of the order of  the vortex lines core radius   𝑅~𝑎     
    the dynamics  of the vortex lines is described quantum mechanically  
    by Gross-Pitaevskii   (nonlinear Schrödinger ) equation.  
 
 
�  At distances of the order of inter-vortex distance   𝑎 ≪ 𝑅~ℓ𝓁 ≪ 𝐻      the tangle 
     dynamics may be described quasi-classically  
     by Biot-Savart equation. 
 
     Vortex Lines Density (VLD)         ℒ 
     inter-vortex distance   ℓ𝓁 = 1/ ℒ 
      
 
 
�   At the macroscopic scale ( 𝑅 ≫ ℓ𝓁) the dynamics is described by  
       a coupled two-fluid model (Hall-Vinen-Bekarevich- Khalatnikov  equations) . 
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“coarse-grained”    Hall-Vinen-Bekarevich- Khalatnikov (HVBK) equations 

 
On the  macroscopic level,  from dimensional reasoning 
      ℒ     - vortex tangle density       
   𝑉 = 𝑉 − 𝑉 -   relative velocity of normal and superfluid    components 

Self-consistent description of the superfluid channel flow requires 
the same level of description for normal and superfluid 

        ℱ ≃   𝜌 𝜅  𝛼  ℒ  𝑉  

                The coupling  term  ℱ - mutual friction force   
 
          –  accounts for the interaction  between normal and superfluid  
          –  depends on microscopic properties of the vortex tangle  

NSE+ coupling  

Euler Eq. + coupling  

Need equation for VLD dynamics 

𝜌 𝑽  +𝜌  (𝑽 ∙ 𝛻  ) 𝑽 = − 𝛻𝑝 − 𝜌 𝑆𝛻𝑇 +  ℱ  + η∆𝑽   

𝜌 𝑽  +  𝜌  (𝑽 ∙ 𝛻  ) 𝑽   = −   𝛻𝑝 + 𝜌 𝑆𝛻𝑇 −  ℱ  
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Hall and Vinen works (1956-1958) 
 
Vinen: Proc. R. Soc. A 238, 204(1956) 
            Proc. R. Soc. A 242, 493 (1957) 
            Proc. R. Soc. A 243, 400 (1958) 
Hall :   Phil. Trans.    A 250, 359 (1957) 

𝑑  ℒ
𝑑  𝑡 = 𝜒 (𝑇)𝐵 𝑇

2   𝜌𝜌 ℒ 𝑉   − 𝜒 (𝑇)   ℏ𝑚ℒ  
Vinen equation 

production decay 

Main assumptions: 
isotropy, homogeneity,  
additivity 

𝑑  ℒ
𝑑  𝑡 = 𝒫 𝑡 − 𝒟(𝑡) 

production decay 

 Often used in  situation where basic assumptions are violated.  
 Modifications  are mostly limited to addition of more terms with  
 different powers of ℒ.  



Rome, 2015 8 

The production  term 𝒫 𝑡 = 𝛼  𝜅  ℒ 𝐹 𝑥   
allows  different forms of   𝐹 𝑥   leading to different forms of  𝒫 𝑡  

Original Vinen’s form 𝒫 𝑡 = 𝛼  𝐶   ℒ / |𝑉 |  
𝒫 𝑡 = 𝛼  𝐶     ℒ  𝑉 /𝜅  

𝒫 𝑡 = 𝛼  𝐶      ℒ    𝑉 /𝜅  

𝐹 𝑥 = 𝑥  

𝐹 𝑥 = 𝑥  

𝐹 𝑥 = 𝑥 /  
Can not be conclusively distinguished by time evolution of VLD in homogeneous flows. 

𝒫 𝑡 = 𝛼  𝜅  ℒ 𝐹 𝑥 ,  𝐷 𝑡 = 𝛼  𝜅  ℒ 𝐺 𝑥 ,  𝑥 = 𝑉   /  𝜅  ℒ  

Not the only form −the  dimensional analysis dictate 

Modified Vinen’s form 

We suggest 

𝐷 𝑡 = 𝛼  𝜅  ℒ 𝐺 𝑥  The decay term 

 well supported by laboratory and numerical experiments 

is 𝑉  independent, 𝐺 𝑥 = 𝐶𝑜𝑛𝑠𝑡 
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𝑑ℒ(𝒓, 𝑡)
𝑑𝑡 + 𝛻  𝒥 𝒓, 𝑡 = 𝒫 𝒓, 𝑡 − 𝒟(𝒓, 𝑡)   

production decay VLD flux 

Specializing to the  flow in a channel 

𝑑ℒ(𝑦, 𝑡)
𝑑𝑡 + 𝑑𝒥(𝑦, 𝑡)

𝑑𝑦 = 𝒫 𝑦, 𝑡 − 𝒟(𝑦, 𝑡)   

𝐷 𝑦, 𝑡 = 𝛼  𝜅  𝐶   ℒ(𝑦)  𝒫 𝑦, 𝑡 = 𝛼  𝐶   ℒ(𝑦) / |𝑉 (𝑦)|  
𝒫 𝑦, 𝑡 = 𝛼  𝐶     ℒ(𝑦)  𝑉 (𝑦)/𝜅  

𝒫 𝑦, 𝑡 = 𝛼  𝐶      ℒ    |𝑉 | (𝑦)/𝜅  
𝒥 𝑦, 𝑡 = − 𝛼

2𝜅
𝑑𝑉 𝑦

𝑑𝑦  

D. Khomenko, L. Kondaurova, V. S. L’vov, P. Mishra, A. Pomyalov, and I. Procaccia, Phys.  Rev. B 91, 180504(R) (2015) 
D. Khomenko, V S. L’vov., A. Pomyalov., and I. Procaccia, in preparation. 
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To test different forms of closure relations for    𝒫 𝑦, 𝑡 , 𝒟 𝑦, 𝑡    and ℐ(𝑦, 𝑡) 
we use numerical simulations of the channel flow in the framework 
of Vortex Filament Method (VFM). 

K. W. Schwarz, Phys. Rev. B, 38, 2398 (1988)  

Vortex line is parameterized by 
 a directional curve 𝒔(𝜉, 𝑡) 
𝒔′′ ∼local curvature 

𝒔′ × 𝒔′′ ∼local velocity 

Superfluid velocity 

applied velocity Biot-Savart velocity 

𝛽 = 𝜅
4𝜋 ln

𝑐  𝑅
𝑎  

Reconnection criterium 

Reconnect lines if  

�The energy of the line is proportional to the length  
�Reconnection is dissipative process 

Dynamic  re-meshing 
During evolution each points moves with its own 
velocity- the distance between points changes. To 
maintain accuracy of calculations , points are 
added or removed from line at each time step. 

Point is removed Point is added 

 

𝑽 =   𝑽 −𝑽    −𝑽         
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Unlike classical vortices, quantum vortex lines stretch and reconnect 
 without changing  the structure and the size of the core 

In VFM  introduced by artificial procedures Not described by equations on BS level  

Dynamic  re-meshing 

During evolution each points moves 
with its own velocity- the distance 
between points changes. To maintain 
accuracy of calculations , points are 
added or removed from line at each 
time step. 

min[[ '�'

Point is removed 
Point is added 

max[[ '!'

Reconnections 

76326372 ���� ��� """"

['��72"Reconnect lines if  

�The energy of the line is proportional to the length  
�Reconnection is a dissipative process 
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On the microscopic level the dynamical balance between vortex-line growths and decay 
 is defined by an instantaneous rate of change of a line element of length δ𝜉  

giving after a proper integration  the closed set of equations for VLD dynamics  

𝐷 𝑦, 𝑡 = 𝛼𝛽
Ω 𝑑𝜉  |𝑠"|  

𝒥 𝑦, 𝑡 = 𝛼
Ω 𝑑𝜉  𝑽 = 𝛼

Ω 𝑑𝜉(𝑽 +𝛼  𝒔′ × 𝑽   ) 

𝒫 𝑦, 𝑡 = 𝛼
Ω 𝑑𝜉  (𝑽 −𝑽    −𝑽    ) ⋅ (𝒔′ × 𝒔") 

  ℒ( , ) +    ( , ) = 𝒫 𝑦, 𝑡  - 𝐷 𝑦, 𝑡  
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The  closure relations  in terms of vortex  tangle properties 

𝐷 𝑦, 𝑡 = 𝛼𝛽
Ω 𝑑𝜉  |𝑠"| = 𝛼𝛽ℒ  𝑆 , 𝑆 = 𝑐 ℒ   Decay term 

𝐷 𝑦, 𝑡 = 𝛼  𝜅  𝐶 ℒ    𝐶 =   𝛽𝑐
𝜅  

𝒥 𝑦, 𝑡 = 𝛼
Ω 𝑑𝜉  𝑉 = 𝛼

Ω 𝑑𝜉  𝑉 , 𝑠′  

𝒥 𝑦, 𝑡 = −𝛼
𝜅 𝑉

𝑑𝑉 𝑦
𝑑𝑦  

Flux toward the wall 

𝒫(𝑦, 𝑡) = 𝛼
Ω 𝑑𝜉𝑽 ⋅ (𝒔′ × 𝒔")   

Production term 

𝒫 𝑦, 𝑡 = 𝛼  ℒ𝑽 ∙ 𝒔′ × 𝒔"  How to model ??? 

𝑽 ∙    𝒔′ × 𝒔" ∼ 𝑉 | 𝒔′ × 𝒔”|   𝒫 (𝑦, 𝑡) 
𝑽 ∙    𝒔′ × 𝒔" ∼ 𝑉  𝑉 ,   𝒫 (𝑦, 𝑡) 
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We consider  counterflow in a planar channel 

� Full Biot-Savart calculations  
 

� Computational domain  0.2x0.1x0.1 cm  
 

�  Periodic boundary conditions in 𝑥, 𝑧 directions 
      Solid walls with slip conditions in 𝑦 direction 
 
� Line resolution Δ𝜉 = 1.6 × 10  cm 

 
�  Dissipative reconnection  criterion 

 
� T=1.6 K, 𝛼 = 0.098, 𝛼 = 0.016,    𝜌 /𝜌 =5.17. 
 
� 𝑉  calculated  dynamically from the  zero net mass flux condition 

𝜌    𝑽 = 𝜌 𝑉 + 𝑽  
 

�    Three normal velocity  profile types 
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Normalized  variables:         𝑦 ≡ 𝑦 ℎ⁄  ;  ℒ ≡ 𝜅 ℒ 𝑉   ;      𝑉 ≡ 𝑉 𝑉⁄⁄  

Parabolic profile 

Non-Parabolic profile Flat-top profile 

VLD and 𝑉  
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Production 

Normalized    variables:          𝑦 ≡ 𝑦 ℎ⁄   ;      𝒫 ≡ 𝜅 𝒫 𝑉⁄  

Parabolic profile 

Flat-top profile 
Non-Parabolic profile 

𝒫 𝑦, 𝑡 ∝   ℒ / |𝑉 | 

𝒫 𝑦, 𝑡  ∝ ℒ  |𝑉 |  

𝒫 𝑦, 𝑡 ∝ ℒ  |𝑉 |  

Original Vinen’s 

Modified Vinen’s 

New form 
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Decay 

Normalized    variables:          𝑦 ≡ 𝑦 ℎ⁄   ;      𝒟 ≡ 𝜅 𝒟 𝑉⁄  

Parabolic profile 

Flat-top profile Non-Parabolic profile 

𝐷 𝑦, 𝑡 = 𝛼  𝜅  𝐶 ℒ    
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Flux of VLD 

Normalized    variables:          𝑦 ≡ 𝑦 ℎ⁄   ;      𝒥 ≡ 𝜅 𝒥 𝑉 /⁄  

Parabolic profile 

Flat-top profile Non-Parabolic profile 

𝒥 𝑦, 𝑡 = −𝛼
𝜅 𝑽

𝑑𝑉 𝑦
𝑑𝑦  

No fitting parameters! 
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  ℒ
 -    𝑉 =    ℒ    |𝑉 | − 𝛼  𝜅  𝐶 ℒ  
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� We have suggested the equation of motion for the vortex 
tangle line density  in the inhomogeneous flows with closure 
relations for the production, decay and VLD flux terms  via  ℒ 
and 𝑉   only. 

 
� We have verified the proposed  closures by direct numerical 

simulation using VFM in a plane channel. 
 

� We found quantitative agreement between the proposed 
closures and the numerical results for different types of the 
normal velocity component profiles. 


