

Established by the European Commission

## Slide of the Seminar

## **Dynamics of the Vortex Lines Density in Superfluid Turbulence**

## **Prof. Anna Pomyalov**

ERC Advanced Grant (N. 339032) "NewTURB" (P.I. Prof. Luca Biferale)

Università degli Studi di Roma Tor Vergata C.F. n. 80213750583 – Partita IVA n. 02133971008 - Via della Ricerca Scientifica, I – 00133 ROMA

# Dynamics of the Vortex Lines Density in Superfluid Turbulence

# Anna Pomyalov

Chemical Physics Department, Weizmann Institute of Science

In collaboration with

D. Khomenko, L. Kondaurova, V. S. L'vov, P. Mishra, and I. Procaccia

Rome, 2015

## Motivation

## Self-consistent description of the superfluid channel flow

## Outline

- Few facts about Superfluid He II
- Equation of Motion for VLD
- Dynamics of VLD in inhomogeneous flow
- Numerical Setup
- Results
- Summary

## Few facts about Superfluid He II

Following discovery of superfluidity in <sup>4</sup>He by Kapitza and Allen and Missener (1937) Tisza (1940) and Landau(1941) suggested a Two-fluid model :

Liquid <sup>4</sup>He below T<sub>c</sub> consists of two interpenetrating fluids – the normal fluid (with very low kinematic viscosity v<sub>n</sub> and density  $\rho_n$ ) and the inviscid superfluid with density  $\rho_s$ ,  $\rho_n + \rho_s = \rho$  density of <sup>4</sup>He for T <2.17 K  $\nu_n = 10^{-4} \ cm^2$  /s at T=2 K



In the superfluid, the vorticity is restricted to a set of vortex lines with circulation quantized to multiples of the circulation quantum  $\kappa = h / m_{_{4}He}$ 

for <sup>4</sup>He the core radius  $a_0 \approx 10^{-8} \ cm; \kappa = 9.97 \times 10^{-4} \ cm^2$  /s .



- The term "superfluid turbulence" refers to a chaotic tangle of interacting quantized vortex lines (R.P. Feinman, Prog in Low Temp. Phys., vol. 1(1955))
- The superfluid turbulence may be excited mechanically or by heat currents (counterflow turbulence).

### **Thermal Counterflow in He II**

A form of motion unique to two-fluid superfluid hydrodynamics, no direct analogy in any ordinary viscous fluid.

Thermal counterflow may be set up by applying a current to a heater located at the closed end of a channel open to a helium bath at the other end.

The heat flux  $\dot{Q}$  is carried away from the heater by the normal fluid alone, and, by conservation of mass  $\rho_n V_n + \rho_s V_s = 0$ , a superfluid current arises in the opposite direction.

In this way a relative (counterflow) velocity  $V_{ns} = V_n - V_s$  is created along the channel, which leads to appearance of a disordered tangle of superfluid vortex lines with density  $\mathcal{L}$ .

 $V_n = \frac{\dot{Q}}{A \, S \, T \, \rho} \qquad \qquad \mathcal{L} = \frac{6 \, \pi \, S}{B \kappa} \left(\frac{A_0}{A} - 1\right)$ 



second sound (fluctuations of temperature) is attenuated by superfluid vortex lines



- At distances of the order of the vortex lines core radius  $R \sim a_0$ the dynamics of the vortex lines is described quantum mechanically by Gross-Pitaevskii (nonlinear Schrödinger) equation.
- At distances of the order of inter-vortex distance  $a_0 \ll R \sim \ell \ll H$  the tangle dynamics may be described quasi-classically by Biot-Savart equation.

Vortex Lines Density (VLD)  $\mathcal{L}$ inter-vortex distance  $\ell = 1/\sqrt{\mathcal{L}}$ 



At the macroscopic scale ( $R \gg \ell$ ) the dynamics is described by a coupled two-fluid model (Hall-Vinen-Bekarevich-Khalatnikov equations). Self-consistent description of the superfluid channel flow requires the same level of description for normal and superfluid

"coarse-grained" Hall-Vinen-Bekarevich- Khalatnikov (HVBK) equations

$$\rho_{n} \frac{\partial V_{n}}{\partial t} + \rho_{n} \left( V_{n} \cdot \nabla \right) V_{n} = -\frac{\rho_{n}}{\rho} \nabla p - \rho_{s} S \nabla T + \mathcal{F}_{ns} + \eta \Delta V_{n} \quad \text{NSE+ coupling}$$

$$\rho_{s} \frac{\partial V_{s}}{\partial t} + \rho_{s} \left( V_{s} \cdot \nabla \right) V_{s} = -\frac{\rho_{s}}{\rho} \nabla p + \rho_{s} S \nabla T - \mathcal{F}_{ns} \quad \text{Euler Eq. + coupling}$$

The coupling term  $\mathcal{F}_{ns}$ - mutual friction force

- accounts for the interaction between normal and superfluid
- depends on microscopic properties of the vortex tangle

On the macroscopic level, from dimensional reasoning  $\mathcal{F}_{ns} \simeq \rho_s \kappa \alpha \mathcal{L} V_{ns}$ 

$$\mathcal{L}$$
 - vortex tangle density

 $V_{ns} = V_s - V_n$ - relative velocity of normal and superfluid components

#### Need equation for VLD dynamics

## **Equation of Motion for VLD**

$$\frac{d \mathcal{L}}{d t} = \mathcal{P}(t) - \mathcal{D}(t)$$
production decay
$$\begin{aligned} \text{Hall and Vinen works (1956-1958)} \\ \text{Vinen: Proc. R. Soc. A 238, 204(1956)} \\ \text{Proc. R. Soc. A 242, 493 (1957)} \\ \text{Proc. R. Soc. A 243, 400 (1958)} \\ \text{Hall : Phil. Trans. A 250, 359 (1957)} \end{aligned}$$

$$\begin{aligned} \frac{d \mathcal{L}}{d t} = \chi_1(T) \frac{B(T)}{2} \frac{\rho_n}{\rho} \mathcal{L}^{\frac{3}{2}} |V_{ns}| - \chi_2(T) \frac{\hbar}{m} \mathcal{L}^2 \\ \text{production} \end{aligned}$$

$$\begin{aligned} \text{Vinen equation} \\ \text{Main assumptions:} \\ \text{isotropy, homogeneity,} \\ \text{additivity} \end{aligned}$$

Often used in situation where basic assumptions are violated. Modifications are mostly limited to addition of more terms with different powers of  $\mathcal{L}$ . Not the only form - the dimensional analysis dictate

$$\mathcal{P}(t) = \alpha \kappa \mathcal{L}^2 F(x), \quad D(t) = \alpha \kappa \mathcal{L}^2 G(x), \quad x = V_{ns}^2 / \kappa \mathcal{L}^2$$

The decay term  $D(t) = \alpha \kappa \mathcal{L}^2 G(x)$  is  $V_{ns}$  independent, G(x) = Const

well supported by laboratory and numerical experiments

The production term $\mathcal{P}(t) = \alpha \kappa \mathcal{L}^2 F(x)$ allows different forms of F(x) leading to different forms of  $\mathcal{P}(t)$ Original Vinen's form $F(x) = \sqrt{x}$  $\mathcal{P}_1(t) = \alpha C_1 \mathcal{L}^{3/2} |V_{ns}|$ Modified Vinen's formF(x) = x $\mathcal{P}_2(t) = \alpha C_2 \mathcal{L} V_{ns}^2 / \kappa$ We suggest $F(x) = x^{3/2}$  $\mathcal{P}_3(t) = \alpha C_3 \sqrt{\mathcal{L}} V_{ns}^3 / \kappa^2$ 

Can not be conclusively distinguished by time evolution of VLD in homogeneous flows.

## **Dynamics of VLD in inhomogeneous flow**

 $\frac{d\mathcal{L}(\boldsymbol{r},t)}{dt} + \nabla \mathcal{J}(\boldsymbol{r},t) = \mathcal{P}(\boldsymbol{r},t) - \mathcal{D}(\boldsymbol{r},t)$ production VID flux decav Specializing to the flow in a channel  $\frac{d\mathcal{L}(y,t)}{dt} + \frac{d\mathcal{J}(y,t)}{dv} = \mathcal{P}(y,t) - \mathcal{D}(y,t)$  $\mathcal{P}_1(y,t) = \alpha C_1 \mathcal{L}(y)^{3/2} |V_{ns}(y)|$  $D_{cl}(y,t) = \alpha \kappa C_d \mathcal{L}(y)^2$  $\mathcal{P}_{2}(y,t) = \alpha C_{2} \mathcal{L}(y) V_{ns}^{2}(y) / \kappa$  $\mathcal{J}_{cl}(y,t) = -\frac{\alpha}{2\kappa} \frac{dV_{ns}^{2}(y)}{dv}$  $\mathcal{P}_3(y,t) = \alpha C_3 \sqrt{\mathcal{L}} |V_{ns}|^3(y)/\kappa^2$ 

D. Khomenko, L. Kondaurova, V. S. L'vov, P. Mishra, A. Pomyalov, and I. Procaccia, Phys. Rev. B **91**, 180504(R) (2015) D. Khomenko, V S. L'vov., A. Pomyalov., and I. Procaccia, in preparation.

## **Vortex Filament Method For Superfluid Dynamics**

To test different forms of closure relations for  $\mathcal{P}(y,t), \mathcal{D}(y,t)$  and  $\mathcal{I}(y,t)$ we use numerical simulations of the channel flow in the framework of Vortex Filament Method (VFM).

K. W. Schwarz, Phys. Rev. B, 38, 2398 (1988)

$$\frac{d\boldsymbol{s}(\xi,t)}{dt} = \boldsymbol{V}^{\mathrm{s}}(\boldsymbol{s},t) + (\alpha - \alpha' \boldsymbol{s}' \times) \, \mathbf{s}' \times \boldsymbol{V}_{\mathrm{ns}}(\boldsymbol{s},t)$$

$$V^{s}(s,t) = V_{0}^{s} + V_{BS}(s)$$
 Superfluid velocity  
applied velocity Biot-Savart velocity



Vortex line is parameterized by a directional curve  $s(\xi, t)$ 

s'' ~local curvature

 $s' \times s'' \sim$ local velocity

$$\begin{split} V_{\rm BS}(s) &= \frac{\kappa}{4\pi} \int_{\mathcal{C}} \frac{(s-s_1) \times ds_1}{|s-s_1|^3} \Rightarrow V_{\rm LIA}^{\rm s} + V_{\rm nl}^{\rm s}(s) \qquad \qquad s' \times s'' \quad \text{-local velocity} \\ V_{\rm LIA}^{\rm s}(s) &= \beta s' \times s'' \qquad \beta = \frac{\kappa}{4\pi} \ln \frac{c R}{a_0} \qquad \qquad V_{\rm nl}^{\rm s}(s) = \frac{\kappa}{4\pi} \int_{\mathcal{C}'} \frac{(s-s_1) \times ds_1}{|s-s_1|^3} \\ V_{ns}^{0} &= V^n - V_0^s - V_{nl}^s \end{split}$$

#### Unlike classical vortices, quantum vortex lines stretch and reconnect without changing the structure and the size of the core Not described by equations on BS level $\longrightarrow$ In VFM introduced by artificial procedures



#### Dynamic re-meshing

During evolution each points moves with its own velocity- the distance between points changes. To maintain accuracy of calculations , points are added or removed from line at each time step.



On the microscopic level the dynamical balance between vortex-line growths and decay is defined by an instantaneous rate of change of a line element of length  $\delta\xi$ 

$$d\delta\xi/(\delta\xi dt) = \mathbf{s}' \cdot d\mathbf{s}'/dt = \alpha \mathbf{V}_{\rm ns} \cdot (\mathbf{s}' \times \mathbf{s}'') + \mathbf{s}' \cdot \mathbf{V}_{\rm nl}^{\rm s'} - \alpha' \mathbf{s}'' \cdot \mathbf{V}_{\rm ns}$$

giving after a proper integration the closed set of equations for VLD dynamics

$$\frac{\partial \mathcal{L}(y,t)}{\partial t} + \frac{\partial J(y,t)}{\partial y} = \mathcal{P}(y,t) - D(y,t)$$

$$D(y,t) = \frac{\alpha\beta}{\Omega} \int d\xi \, |s''|^2$$
$$\mathcal{J}(y,t) = \frac{\alpha}{\Omega} \int d\xi \, \mathbf{V}_{drift} = \frac{\alpha}{\Omega} \int d\xi (\mathbf{V}^s + \alpha \, \mathbf{s}' \times \mathbf{V}_{ns})$$
$$\mathcal{P}(y,t) = \frac{\alpha}{\Omega} \int d\xi \, (\mathbf{V}^n - \mathbf{V}_0^s - \mathbf{V}_{nl}^s) \cdot (\mathbf{s}' \times \mathbf{s}'')$$

The closure relations in terms of vortex tangle properties

Decay term  

$$D(y,t) = \frac{\alpha\beta}{\Omega} \int d\xi |s''|^2 = \alpha\beta\mathcal{L}\,\tilde{S}^2, \quad \tilde{S}^2 = c_2^2\mathcal{L}$$

$$D_{cl}(y,t) = \alpha \kappa C_d \mathcal{L}^2 \qquad C_d = \frac{\beta c_2^2}{\kappa}$$
Flux toward the wall  

$$\mathcal{J}(y,t) = \frac{\alpha}{\Omega} \int d\xi \, V_{drift} = \frac{\alpha}{\Omega} \int d\xi \, V_{ns,x} s'_z$$

$$\mathcal{J}_{cl}(y,t) = -\frac{\alpha}{\kappa} V_{ns} \frac{dV_s(y)}{dy}$$

Production term  

$$\mathcal{P}(y,t) = \frac{\alpha}{\Omega} \int d\xi V_{ns}^{0} \cdot (s' \times s'')$$

$$\mathcal{P}(y,t) = \alpha \mathcal{L}V_{ns}^{0} \cdot \langle s' \times s'' \rangle$$
How to model ???  

$$V_{ns}^{0} \cdot \langle s' \times s'' \rangle \sim V_{ns} | s' \times s'' | \longrightarrow \mathcal{P}_{1}(y,t)$$

$$V_{ns}^{0} \cdot \langle s' \times s'' \rangle \sim V_{ns} V_{loc,x} \longrightarrow \mathcal{P}_{3}(y,t)$$

## **Numerical Setup**

We consider counterflow in a planar channel

- Full Biot-Savart calculations
- Computational domain 0.2x0.1x0.1 cm
- Periodic boundary conditions in x, z directions
   Solid walls with slip conditions in y direction
- Line resolution  $\Delta \xi = 1.6 \times 10^{-3}$  cm
- Dissipative reconnection criterion
- T=1.6 K,  $\alpha = 0.098$ ,  $\alpha' = 0.016$ ,  $\rho_s/\rho_n$ =5.17.
- $V_0^s$  calculated dynamically from the zero net mass flux condition  $\rho_n \langle V_n \rangle = \rho_s \langle V_0^s + V_{BS} \rangle$
- Three normal velocity profile types





## Results









## How it works?

$$\frac{\partial \mathcal{L}}{\partial t} - \frac{\alpha}{\kappa} \frac{\partial}{\partial y} \left[ V_{ns} \frac{dV_s}{dy} \right] = \frac{\alpha C_3}{\kappa^2} \sqrt{\mathcal{L}} |V_{ns}|^3 - \alpha \kappa C_d \mathcal{L}^2$$



## Summary

- \* We have suggested the equation of motion for the vortex tangle line density in the inhomogeneous flows with closure relations for the production, decay and VLD flux terms via  $\mathcal{L}$  and  $V_{ns}$  only.
- We have verified the proposed closures by direct numerical simulation using VFM in a plane channel.
- We found quantitative agreement between the proposed closures and the numerical results for different types of the normal velocity component profiles.